Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.629
Filtrar
1.
Eur J Histochem ; 68(2)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624064

RESUMO

Antibody-based fluorescence analysis of female reproductive tissues in research of sexually transmitted diseases allows for an in-depth understanding of protein localization, interactions, and pathogenesis. However, in many cases, cryosectioning is not compatible with biosafety regulations; at all times, exposure of lab personnel and the public to potentially harmful pathogens from biological infectious material must be avoided; thus, formaldehyde fixation is essential. Due to formaldehyde's cross-linking properties, protein detection with antibodies can be impeded. To allow effective epitope binding during immunofluorescence of formalin-fixed paraffin-embedded vaginal tissue, we investigated two antigen retrieval methods. We tested these methods regarding their suitability for automated image analysis, facilitating reproducible quantitative microscopic data acquisition in sexually transmitted disease research. Heat-based retrieval at 80°C in citrate buffer proved to increase antibody binding to eosinophil protein and HSV-2 visibly and tissue morphology best, and was the most efficient for sample processing and quantitative analysis.


Assuntos
Formaldeído , Herpesvirus Humano 2 , Feminino , Humanos , Epitopos , Fixação de Tecidos/métodos , Eosinófilos/química , Imuno-Histoquímica , Antígenos/análise , Coloração e Rotulagem , Caminhada , Inclusão em Parafina
2.
Commun Biol ; 7(1): 392, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555407

RESUMO

With the increased use of gene expression profiling for personalized oncology, optimized RNA sequencing (RNA-seq) protocols and algorithms are necessary to provide comparable expression measurements between exome capture (EC)-based and poly-A RNA-seq. Here, we developed and optimized an EC-based protocol for processing formalin-fixed, paraffin-embedded samples and a machine-learning algorithm, Procrustes, to overcome batch effects across RNA-seq data obtained using different sample preparation protocols like EC-based or poly-A RNA-seq protocols. Applying Procrustes to samples processed using EC and poly-A RNA-seq protocols showed the expression of 61% of genes (N = 20,062) to correlate across both protocols (concordance correlation coefficient > 0.8, versus 26% before transformation by Procrustes), including 84% of cancer-specific and cancer microenvironment-related genes (versus 36% before applying Procrustes; N = 1,438). Benchmarking analyses also showed Procrustes to outperform other batch correction methods. Finally, we showed that Procrustes can project RNA-seq data for a single sample to a larger cohort of RNA-seq data. Future application of Procrustes will enable direct gene expression analysis for single tumor samples to support gene expression-based treatment decisions.


Assuntos
Perfilação da Expressão Gênica , RNA , Humanos , Fixação de Tecidos/métodos , Perfilação da Expressão Gênica/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Aprendizado de Máquina
3.
Genome Biol ; 25(1): 81, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553769

RESUMO

The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.


Assuntos
Genômica , RNA , Humanos , Animais , Camundongos , Fixação de Tecidos/métodos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , RNA/genética , Genômica/métodos , Análise de Célula Única/métodos
4.
Lab Invest ; 104(1): 100280, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345263

RESUMO

Formalin-fixed paraffin-embedded (FFPE) samples represent the cornerstone of tissue-based analysis in precision medicine. Targeted next-generation sequencing panels are routinely used to analyze a limited number of genes to guide treatment decision-making for advanced-stage patients. The number and complexity of genetic alterations to be investigated are rapidly growing; in several instances, a comprehensive genomic profiling analysis is needed. The poor quality of genetic material extracted from FFPE samples may impact the feasibility/reliability of sequencing data. We sampled 9 colorectal cancers to allow 4 parallel fixations: (1) neutral buffered formalin (NBF), (2) acid-deprived formalin fixation (ADF), (3) precooled ADF (coldADF), and (4) glyoxal acid free (GAF). DNA extraction, fragmentation analysis, and sequencing by 2 large next-generation sequencing panels (OCAv3 and TSO500) followed. We comprehensively analyzed library and sequencing quality controls and the quality of sequencing results. Libraries from coldADF samples showed significantly longer reads than the others with both panels. ADF-derived and coldADF-derived libraries showed the lowest level of noise and the highest levels of uniformity with the OCAv3 panel, followed by GAF and NBF samples. The data uniformity was confirmed by the TSO500 results, which also highlighted the best performance in terms of the total region sequenced for the ADF and coldADF samples. NBF samples had a significantly smaller region sequenced and displayed a significantly lower number of evaluable microsatellite loci and a significant increase in single-nucleotide variations compared with other protocols. Mutational signature 1 (aging and FFPE artifact related) showed the highest (37%) and lowest (17%) values in the NBF and coldADF samples, respectively. Most of the identified genetic alterations were shared by all samples in each lesion. Five genes showed a different mutational status across samples and/or panels: 4 discordant results involved NBF samples. In conclusion, acid-deprived fixatives (GAF and ADF) guarantee the highest DNA preservation/sequencing performance, thus allowing more complex molecular profiling of tissue samples.


Assuntos
Artefatos , DNA , Humanos , Fixação de Tecidos/métodos , Reprodutibilidade dos Testes , DNA/genética , DNA/análise , Formaldeído , Genômica , Inclusão em Parafina , Sequenciamento de Nucleotídeos em Larga Escala
5.
Biotechniques ; 76(4): 153-160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334498

RESUMO

Modern approaches to discovering molecular mechanisms and validating treatments for age-related neuromusculoskeletal dysfunction typically rely on high-throughput transcriptome analysis. Previously harvested and fixed tissues offer an incredible reservoir of untapped molecular information. However, obtaining RNA from such formaldehyde-fixed neuromusculoskeletal tissues, especially fibrotic aged tissues, is technically challenging and often results in RNA degradation, chemical modification and yield reduction, prohibiting further analysis. Therefore, we developed a protocol to extract high-quality RNA from formaldehyde-fixed brain, cartilage, muscle and peripheral nerve isolated from naturally aged mice. Isolated RNA produced reliable gene expression data comparable to fresh and flash-frozen tissues and was sensitive enough to detect age-related changes, making our protocol valuable to researchers in the field of aging.


Assuntos
Formaldeído , RNA , Camundongos , Animais , Fixação de Tecidos/métodos , Transcriptoma , Encéfalo , Inclusão em Parafina/métodos , Perfilação da Expressão Gênica/métodos
6.
J Neurosci Methods ; 405: 110085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387804

RESUMO

BACKGROUND: Immunohistochemistry (IHC) is an important technique in understanding the expression of neurochemical molecules in the developing human brain. Despite its routine application in the research and clinical setup, the IHC protocol specific for soft fragile fetal brains that are fixed using the non-perfusion method is still limited in studying the whole brain. NEW METHOD: This study shows that the IHC protocols, using a chromogenic detection system, used in animals and adult humans are not optimal in the fetal brains. We have optimized key steps from Antigen retrieval (AR) to chromogen visualization for formalin-fixed whole-brain cryosections (20 µm) mounted on glass slides. RESULTS: We show the results from six validated, commonly used antibodies to study the fetal brain. We achieved optimal antigen retrieval with 0.1 M Boric Acid, pH 9.0 at 70°C for 20 minutes. We also present the optimal incubation duration and temperature for protein blocking and the primary antibody that results in specific antigen labeling with minimal tissue damage. COMPARISON WITH EXISTING METHODS: The IHC protocol commonly used for adult human and animal brains results in significant tissue damage in the fetal brains with little or suboptimal antigen expression. Our new method with important modifications including the temperature, duration, and choice of the alkaline buffer for AR addresses these pitfalls and provides high-quality results. CONCLUSION: The optimized IHC protocol for the developing human brain (13-22 GW) provides a high-quality, repeatable, and reliable method for studying chemoarchitecture in neurotypical and pathological conditions across different gestational ages.


Assuntos
Antígenos , Formaldeído , Humanos , Animais , Imuno-Histoquímica , Antígenos/metabolismo , Anticorpos , Encéfalo/metabolismo , Fixação de Tecidos/métodos
7.
J Vet Diagn Invest ; 36(2): 169-176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212877

RESUMO

CNS tumor diagnosis in dogs often relies on immunohistochemistry (IHC) given similar histologic features among tumors. Most CNS tissue samples encountered by diagnostic pathologists are collected during autopsy, and postmortem specimens can be susceptible to autolysis and prolonged formalin fixation, both of which have the potential to influence IHC results and interpretation. Here we evaluated the effects of experimentally controlled autolysis induced by delayed tissue fixation (sections of brain held for 2, 4, 8, 12, 24, 48, and 72 h in 0.9% NaCl at either room temperature or 37°C prior to fixation) as well as the effects of prolonged formalin fixation times (1 wk, 1 mo, 2 mo) on a panel of 8 IHC markers (CNPase, GFAP, Iba1, OLIG2, PGP9.5, MAP2, NeuN, synaptophysin) relevant to brain tumor diagnosis. Prolonged fixation of up to 2 mo had no detrimental effect on any immunomarker except NeuN, which had reduced immunolabeling intensity. Delayed fixation led to autolytic changes as expected, on a gradient of severity corresponding to increased time in saline prior to fixation. Several immunomarkers should be used with caution (CNPase, OLIG2) or avoided entirely (MAP2, NeuN) in markedly autolyzed brain and brain tumor tissues. Our results suggest that autolysis has minimal effect on most immunomarkers, but that advanced autolysis may cause a loss of specificity for GFAP, MAP2, and PGP9.5, a loss of intensity of CNPase and OLIG2, and loss of labeling with MAP2 and NeuN. Prolonged fixation affected only NeuN, with mildly decreased intensity.


Assuntos
Neoplasias Encefálicas , Doenças do Cão , Cães , Animais , Imuno-Histoquímica , Formaldeído , Encéfalo/patologia , Fixação de Tecidos/veterinária , Fixação de Tecidos/métodos , Neoplasias Encefálicas/veterinária , Neoplasias Encefálicas/patologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases , Doenças do Cão/diagnóstico , Doenças do Cão/patologia
8.
Sci Rep ; 14(1): 2559, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297116

RESUMO

Formalin-fixed, paraffin-embedded (FFPE) tissue specimens are routinely used in pathological diagnosis, but their large number of artifactual mutations complicate the evaluation of companion diagnostics and analysis of next-generation sequencing data. Identification of variants with low allele frequencies is challenging because existing FFPE filtering tools label all low-frequency variants as artifacts. To address this problem, we aimed to develop DEEPOMICS FFPE, an AI model that can classify a true variant from an artifact. Paired whole exome sequencing data from fresh frozen and FFPE samples from 24 tumors were obtained from public sources and used as training and validation sets at a ratio of 7:3. A deep neural network model with three hidden layers was trained with input features using outputs of the MuTect2 caller. Contributing features were identified using the SHapley Additive exPlanations algorithm and optimized based on training results. The performance of the final model (DEEPOMICS FFPE) was compared with those of existing models (MuTect filter, FFPolish, and SOBDetector) by using well-defined test datasets. We found 41 discriminating properties for FFPE artifacts. Optimization of property quantification improved the model performance. DEEPOMICS FFPE removed 99.6% of artifacts while maintaining 87.1% of true variants, with an F1-score of 88.3 in the entire dataset not used for training, which is significantly higher than those of existing tools. Its performance was maintained even for low-allele-fraction variants with a specificity of 0.995, suggesting that it can be used to identify subclonal variants. Different from existing methods, DEEPOMICS FFPE identified most of the sequencing artifacts in the FFPE samples while retaining more of true variants, including those of low allele frequencies. The newly developed tool DEEPOMICS FFPE may be useful in designing capture panels for personalized circulating tumor DNA assay and identifying candidate neoepitopes for personalized vaccine design. DEEPOMICS FFPE is freely available on the web ( http://deepomics.co.kr/ffpe ) for research.


Assuntos
Artefatos , Formaldeído , Inclusão em Parafina , Fixação de Tecidos/métodos , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Redes Neurais de Computação
9.
Lab Invest ; 104(4): 100325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220043

RESUMO

Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.


Assuntos
Formaldeído , 60488 , Humanos , Genótipo , Fixação de Tecidos/métodos , DNA/genética , Inclusão em Parafina/métodos
10.
Lab Invest ; 104(1): 100282, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924947

RESUMO

Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.


Assuntos
Formaldeído , Proteômica , Camundongos , Animais , Fixadores , Fixação de Tecidos/métodos , Proteômica/métodos , Inclusão em Parafina/métodos
11.
Biotechnol J ; 19(1): e2300294, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818700

RESUMO

The combination of single-cell RNA sequencing and microdissection techniques that preserves positional information has become a major tool for spatial transcriptome analyses. However, high costs and time requirements, especially for experiments at the single cell scale, make it challenging for this approach to meet the demand for increased throughput. Therefore, we proposed combinational DNA barcode (CDB)-seq as a medium-throughput, multiplexed approach combining Smart-3SEQ and CDB magnetic microbeads for transcriptome analyses of microdissected tissue samples. We conducted a comprehensive comparison of conditions for CDB microbead preparation and related factors and then applied CDB-seq to RNA extracts, fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) mouse brain tissue samples. CDB-seq transcriptomic profiles of tens of microdissected samples could be obtained in a simple, cost-effective way, providing a promising method for future spatial transcriptomics.


Assuntos
Anti-Infecciosos , Transcriptoma , Camundongos , Animais , Transcriptoma/genética , Microesferas , Código de Barras de DNA Taxonômico , Fixação de Tecidos/métodos , Perfilação da Expressão Gênica/métodos , DNA , Formaldeído
12.
J Vet Diagn Invest ; 36(1): 70-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014733

RESUMO

We assessed the effects of fixation time in formalin and inclusion of surrounding tissue on microRNA (miRNA) cycle quantification (Cq) values in formalin-fixed, paraffin-embedded (FFPE) urothelial carcinoma (UC) tissue (n = 3), and the effect of conditions on miRNAs in urine from 1 healthy dog. MiRNAs were extracted using commercial kits and quantified using miRNA-specific fluorometry in normal bladder tissue scrolls, UC tissue cores, and bladder muscularis tissue cores from 4 FFPE bladder sections (3 UCs, 1 normal), plus 1 UC stored in formalin for 1, 8, 15, and 22 d before paraffin-embedding. Urine was collected from a healthy dog on 4 occasions; 1-mL aliquots were stored at 20, 4, -20, and -80°C for 4, 8, 24, and 48 h, and 1 and 2 wk. For both FFPE tissue and urine, we used reverse-transcription quantitative real-time PCR (RT-qPCR) to quantify miR-143, miR-152, miR-181a, miR-214, miR-1842, and RNU6B in each tissue or sample, using miR-39 as an exogenous control gene. The Cq values were compared with ANOVA and t-tests. The time of tissue-fixation in formalin did not alter miRNA Cq values; inclusion of the muscularis layer resulted in a statistically different miRNA Cq profile for miR-152, miR-181a, and RNU6B in bladder tissue. MiRNAs in acellular urine were stable for up to 2 wk regardless of the storage temperature. Our findings support using stored FFPE and urine samples for miRNA detection; we recommend measuring miRNA only in the tissue of interest in FFPE sections.


Assuntos
Carcinoma de Células de Transição , Doenças do Cão , MicroRNAs , Neoplasias da Bexiga Urinária , Cães , Animais , MicroRNAs/genética , MicroRNAs/análise , Projetos Piloto , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/veterinária , Neoplasias da Bexiga Urinária/veterinária , Inclusão em Parafina/veterinária , Formaldeído , Fixação de Tecidos/veterinária , Fixação de Tecidos/métodos , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Doenças do Cão/patologia
13.
Med Image Anal ; 91: 102992, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37852162

RESUMO

Formalin-fixation and paraffin-embedding (FFPE) is a technique for preparing and preserving tissue specimens that has been utilized in histopathology since the late 19th century. This process is further complicated by FFPE preparation steps such as fixation, processing, embedding, microtomy, staining, and coverslipping, which often results in artifacts due to the complex histological and cytological characteristics of a tissue specimen. The term "artifacts" includes, but is not limited to, staining inconsistencies, tissue folds, chattering, pen marks, blurring, air bubbles, and contamination. The presence of artifacts may interfere with pathological diagnosis in disease detection, subtyping, grading, and choice of therapy. In this study, we propose FFPE++, an unpaired image-to-image translation method based on contrastive learning with a mixed channel-spatial attention module and self-regularization loss that drastically corrects the aforementioned artifacts in FFPE tissue sections. Turing tests were performed by 10 board-certified pathologists with more than 10 years of experience. These tests which were performed for ovarian carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, and papillary thyroid carcinoma, demonstrate the clear superiority of the proposed method in many clinical aspects compared with standard FFPE images. Based on the qualitative experiments and feedback from the Turing tests, we believe that FFPE++ can contribute to substantial diagnostic and prognostic accuracy in clinical pathology in the future and can also improve the performance of AI tools in digital pathology. The code and dataset are publicly available at https://github.com/DeepMIALab/FFPEPlus.


Assuntos
Diagnóstico por Imagem , Formaldeído , Humanos , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos
14.
Histochem Cell Biol ; 161(4): 359-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147127

RESUMO

Demonstration of glycogen in tissue holds considerable diagnostic relevance across various pathological conditions, particularly in certain tumors. The histochemical staining of glycogen using methods utilizing Schiff's reagents is subject to influences arising from the type of fixative, fixation temperature, and oxidizing agents employed. This study aimed to assess diverse fixatives, fixation temperatures, and oxidizing agents, each with variable treatment durations, in conjunction with Schiff's reagent for optimal glycogen demonstration. Paraffin blocks derived from a rabbit's liver served as the experimental substrate, encompassing 340 paraffin sections subjected to different procedures. For tissues fixed at 4 °C, good staining outcomes, as determined by the periodic acid-Schiff (PAS) stain, were observed with 10% neutral buffered formalin (NBF), 80% alcohol, and Bouin's solution. Tissues fixed at room temperature (RT) demonstrated good PAS staining results with both 10% NBF and 80% alcohol. Notably, other oxidizing agents exhibited poor outcomes across all fixatives and fixation temperature, with two exceptions, as satisfactory staining results were obtained when using 5% chromic acid. Consequently, Both 10% NBF and 80% emerge as preferred fixatives of choice for glycogen demonstration when coupled with PAS stain. It is noteworthy that Bouin's solution could also provide good outcomes when fixation occurred at 4 °C.


Assuntos
Ácido Acético , Glicogênio , Parafina , Picratos , Fixadores , Fixação de Tecidos/métodos , Formaldeído , Coloração e Rotulagem , Corantes , Fígado , Oxidantes
15.
J Mech Behav Biomed Mater ; 150: 106294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128472

RESUMO

Tissue fixation is a prevalent method for bone conservation. Bone biopsies are typically fixed in formalin, dehydrated in ethanol, and infiltrated with polymethyl methacrylate (PMMA) Since some experiments can only be performed on fixed bone samples, it is essential to understand how fixation affects the measured material properties. The aim of this study was to quantify the influence of tissue fixation on the mechanical properties of cortical ovine bone at the extracellular matrix (ECM) level with state-of-the-art micromechanical techniques. A small section from the middle of the diaphysis of two ovine tibias (3.5 and 5.5 years old) was cut in the middle and polished on each side, resulting in a pair of mirrored surfaces. For each pair, one specimen underwent a fixation protocol involving immersion in formalin, dehydration with ethanol, and infiltration with PMMA. The other specimen (mirrored) was air-dried. Six osteons were selected in both pairs, which could be identified in both specimens. The influence of fixation on the mechanical properties was first analyzed using micropillar compression tests and nanoindentation in dry condition. Additionally, changes in the degree of mineralization were evaluated with Raman spectroscopy in both fixed and native bone ECM. Finally, micro tensile experiments were conducted in the 3.5-year fixed ovine bone ECM and compared to reported properties of unfixed dry ovine bone ECM. Interestingly, we found that tissue fixation does not alter the mechanical properties of ovine cortical bone ECM compared to experiments in dry state. However, animal age increases the degree of mineralization (p = 0.0159) and compressive yield stress (p = 0.041). Tissue fixation appears therefore as a valid conservation technique for investigating the mechanical properties of dehydrated bone ECM.


Assuntos
Formaldeído , Polimetil Metacrilato , Ovinos , Animais , Fixação de Tecidos/métodos , Formaldeído/química , Etanol , Matriz Extracelular
16.
BMC Genomics ; 24(1): 777, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102591

RESUMO

RNA-Seq analysis of Formalin-Fixed and Paraffin-Embedded (FFPE) samples has emerged as a highly effective approach and is increasingly being used in clinical research and drug development. However, the processing and storage of FFPE samples are known to cause extensive degradation of RNAs, which limits the discovery of gene expression or gene fusion-based biomarkers using RNA sequencing, particularly methods reliant on Poly(A) enrichment. Recently, researchers have developed an exome targeted RNA-Seq methodology that utilizes biotinylated oligonucleotide probes to enrich RNA transcripts of interest, which could overcome these limitations. Nevertheless, the standardization of this experimental framework, including probe designs, sample multiplexing, sequencing read length, and bioinformatic pipelines, remains an essential requirement. In this study, we conducted a comprehensive comparison of three main commercially available exome capture kits and evaluated key experimental parameters, to provide the overview of the advantages and limitations associated with the selection of library preparation protocols and sequencing platforms. The results provide valuable insights into the best practices for obtaining high-quality data from FFPE samples.


Assuntos
Exoma , Formaldeído , Perfilação da Expressão Gênica/métodos , Parafina , Inclusão em Parafina/métodos , RNA/genética , Análise de Sequência de RNA , Fixação de Tecidos/métodos
17.
Anal Chem ; 95(45): 16733-16743, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922386

RESUMO

In the era of single-cell biology, spatial proteomics has emerged as an important frontier. However, it still faces several challenges in technology. Formalin-fixed paraffin-embedded (FFPE) tissues are an important material in spatial proteomics, in which fixed tissues are excised using laser capture microdissection (LCM), followed by protein identification with mass spectrometry. For a satisfied spatial proteomics upon FFPE tissues, the excision area is expected to be as small as possible, and the identified proteins are countered upon as much as possible. For a general laboratory for spatial proteomics, a routine workflow is required, not relying on any special device, and is easily operating. In view of these challenges in technology, we initiated a technology evaluation throughout the entire procedure of proteomic analysis with micro-FFPE tissues. In contrast to the protocols reported previously, several innovations in technology were proposed and conducted, such as removal of destaining, decross-linking with "hang-down", solution simplification for peptide generation and balancing to excision area, and capture rate of micro-FFPE tissues. After optimization of all the necessary steps, a routine workflow was established, in which the minimized area for protein identification was 0.002 mm2, while the excision area for a consistent proteomic analysis was 0.05 mm2. Using the developed workflow and collecting the micro-FFPE tissues continuously, for the first time, a spatial proteomic atlas of mouse brain was preliminarily constructed, which exhibited the typical characteristics of spatial-dependent protein abundance and functional enrichment.


Assuntos
Formaldeído , Proteômica , Camundongos , Animais , Fixação de Tecidos/métodos , Formaldeído/química , Proteômica/métodos , Inclusão em Parafina/métodos , Fluxo de Trabalho , Proteínas/análise
18.
Pathol Int ; 73(12): 593-600, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933792

RESUMO

Analyzing RNA samples from formalin-fixed paraffin-embedded (FFPE) tissues is essential for precision medicine. We investigated RNA quantity and quality from FFPE tumor tissues fixed in formalin for various times and compared sequencing metrics from next-generation sequencing (NGS). Hepatocellular carcinoma (HCC) tissues were fixed in 10% neutral buffered formalin (1-240 h) and FFPE blocks were prepared. Total RNA was extracted, and the quantity and quality were assessed using the NanoDrop, Qubit and Bioanalyzer. After preparing sequencing libraries, NGS was performed on the Oncomine Dx Multi-CDx system. Total RNA yields of all samples met the threshold required for NGS, but longer fixation times resulted in decreased total RNA and long RNA fragment (>200 nt) yields. NGS analysis showed fewer sequencing reads of internal control genes from RNA with longer fixation times. RNA extracted from FFPE blocks stored for 500 days had reduced RNA yield and quality compared with RNA obtained from FFPE blocks prepared immediately. In conclusion, short and over-fixation should be avoided because of their negative impact on sequencing quality. Fixation process should be finished promptly within recommended guidelines (6-72 h) for cancer patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Formaldeído , Carcinoma Hepatocelular/genética , Fixação de Tecidos/métodos , RNA , Inclusão em Parafina/métodos , Neoplasias Hepáticas/genética
19.
Medicine (Baltimore) ; 102(42): e35535, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861485

RESUMO

To investigate the effect of pretreatment of tumor biopsy specimens using fixed, dehydrated and transparent three-in-one composite environmental protection reagent ultrasound tissue rapid processing technique on subsequent detection. From April 2020 to October 2020, a total of 100 cases including breast, stomach and lung tissues were submitted to our diagnosis, and 3 specimens were collected from each specimen and divided into the control group (traditional biopsy tissue processing method), experimental group 1 (3.7% neutral buffered formaldehyde fixation, compound environmental protection reagent rapid ultrasound tissue processing technique, processing temperature 48 °C, time 20 minutes/time, twice, wax immersion temperature 62 °C, time 25 minutes) and experimental group 2 (3.7% neutral buffered formaldehyde fixation, compound environmental protection reagent rapid ultrasound tissue processing technique, processing temperature 50 °C, time 15 min/time, twice, Wax dipping temperature 64 °C, time 20 minutes). The effects of different treatments on hematoxylin eosin section, immunohistochemistry (IHC) and molecular pathological examination were analyzed. The detection results of hematoxylin eosin, fluorescence in situ hybridization and IHC against human epidermal growth factor receptor 2 and epidermal growth factor receptor gene mutation in the experimental group were completely consistent with those in the control group. There was no significant difference in the results between experiment 1 and experiment 2 groups. The rapid processing technique of ultrasound tissue with compound environmental protection reagent can be applied to the rapid detection of tumor biopsy specimens, and different processing temperatures and durations have no significant effect on the accuracy of HE staining, IHC, fluorescence in situ hybridization and gene mutation detection.


Assuntos
Neoplasias , Ultrassom , Humanos , Fixação de Tecidos/métodos , Indicadores e Reagentes , Hibridização in Situ Fluorescente/métodos , Amarelo de Eosina-(YS) , Hematoxilina , Conservação dos Recursos Naturais , Formaldeído
20.
PLoS One ; 18(10): e0293400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883360

RESUMO

Clinical tumor tissues that are preserved as formalin-fixed paraffin-embedded (FFPE) samples result in extensive cross-linking, fragmentation, and chemical modification of RNA, posing significant challenges for RNA-seq-based gene expression profiling. This study sought to define an optimal RNA-seq protocol for FFPE samples. We employed a common RNA extraction method and then compared RNA-seq library preparation protocols including RNAaccess, RiboZero and PolyA in terms of sequencing quality and concordance of gene expression using FFPE and case-matched fresh-frozen (FF) triple-negative breast cancer (TNBC) tissues. We found that RNAaccess, a method based on exome capture, produced the most concordant results. Applying RNAaccess to FFPE gastric cancer tissues, we established a minimum RNA DV200 requirement of 10% and a RNA input amount of 10ng that generated highly reproducible gene expression data. Lastly, we demonstrated that RNAaccess and NanoString platforms produced highly concordant expression profiles from FFPE samples for shared genes; however, RNA-seq may be preferred for clinical biomarker discovery work because of the broader coverage of the transcriptome. Taken together, these results support the selection of RNA-seq RNAaccess method for gene expression profiling of FFPE samples. The minimum requirements for RNA quality and input established here may allow for inclusion of clinical FFPE samples of sub-optimal quality in gene expression analyses and ultimately increasing the statistical power of such analyses.


Assuntos
Perfilação da Expressão Gênica , RNA , RNA-Seq , Fixação de Tecidos/métodos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , RNA/genética , RNA/análise , Inclusão em Parafina/métodos , Formaldeído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...